

Available online at www.sciencedirect.com

TECTONOPHYSICS

Tectonophysics 366 (2003) 1-53

www.elsevier.com/locate/tecto

Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history

Lothar Ratschbacher^{a,*}, Bradley R. Hacker^b, Andrew Calvert^c, Laura E. Webb^d, Jens C. Grimmer^a, Michael O. McWilliams^e, Trevor Ireland^f, Shuwen Dong^g, Jianmin Hu^g

^a Institut für Geologie, Technische Universität Bergakademie Freiberg, Bernhard von Cottastrasse 2, Freiberg Sachsen D-09599, Germany
^b Department of Geological Sciences, University of California, Santa Barbara, CA 93160, USA
^c U.S. Geological Survey, 345 Middlefield Road, MS-910 Menlo Park, CA 94025, USA
^d Department of Earth Sciences, Syracuse University, Syracuse, NY 13244-1070, USA
^e Department of Geology and Environmental Sciences, Stanford University, Stanford, CA 94305-2215, USA
^f Research School of Earth Sciences, The Australian National University, Canberra, Australia
^g Chinese Academy of Geological Sciences, Beijing, PR China

Received 5 April 2002; accepted 5 February 2003

Abstract

The Qinling orogen preserves a record of late mid-Proterozoic to Cenozoic tectonism in central China. High-pressure metamorphism and ophiolite emplacement (Songshugou ophiolite) assembled the Yangtze craton, including the lower Qinling unit, into Rodinia during the ~ 1.0 Ga Grenvillian orogeny. The lower Qinling unit then rifted from the Yangtze craton at ~ 0.7 Ga. Subsequent intra-oceanic arc formation at $\sim 470-490$ Ma was followed by accretion of the lower Qinling unit first to the intra-oceanic arc and then to the Sino-Korea craton. Subduction then imprinted a ~ 400 Ma Andean-type magmatic arc onto all units north of the northern Liuling unit. Oblique subduction created Silurian-Devonian WNW-trending, sinistral transpressive wrench zones (e.g., Lo-Nan, Shang-Dan), and Late Permian-Early Triassic subduction reactivated them in dextral transpression (Lo-Nan, Shang-Xiang, Shang-Dan) and subducted the northern edge of the Yangtze craton. Exhumation of the cratonal edge formed the Wudang metamorphic core complex during dominantly pure shear crustal extension at $\sim 230-235$ Ma. Post-collisional south-directed shortening continued through the Early Jurassic. Cretaceous reactivation of the Qinling orogen started with NW-SE sinistral transtension, coeval with large-scale Early Cretaceous crustal extension and sinistral transtension in the northern Dabie Shan; it presumably resulted from the combined effects of the Siberia-Mongolia - Sino-Korean and Lhasa - West Burma-Qiangtang-Indochina collisions and Pacific subduction. Regional dextral wrenching was active within a NE-SW extensional regime between ~ 60 and 100 Ma. An Early Cretaceous Andean-type continental magmatic arc, with widespread Early Cretaceous magmatism and back-arc extension, was overprinted by shortening related to the collision of Yangtze-Indochina Block with the West Philippines Block. Strike-slip and normal faults associated with Eocene half-graben basins record Paleogene NNE-SSW contraction and WNW-ESE extension. The Neogene(?) is characterized by normal faults and NNE-trending sub-horizontal extension. Pleistocene(?)-Quaternary NW-SE extension and

^{*} Corresponding author. Tel.: +49-3731-393758; fax: +49-3731-393597.

E-mail address: lothar@geo.tu-freiberg.de (L. Ratschbacher).